The realization space is [1 1 x1^2 - x1 - 1 0 0 1 1 x1^3 - 2*x1^2 + 1 0 x1 - 1 1] [1 0 x1^2 - x1 1 0 1 0 x1^3 - 2*x1^2 + x1 1 x1 x1] [0 0 0 0 1 1 x1^2 - x1 x1^3 - x1^2 - x1 x1 - 1 x1 x1^2 - x1] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (x1^14 - 6*x1^13 + 9*x1^12 + 13*x1^11 - 51*x1^10 + 44*x1^9 + 6*x1^8 - 23*x1^7 + 5*x1^6 + 2*x1^5) avoiding the zero loci of the polynomials RingElem[x1, x1 - 2, x1 - 1, x1^2 - x1 - 1, 2*x1 - 3, x1^3 - 2*x1^2 + x1 - 1, x1^4 - 2*x1^3 - 2*x1^2 + 5*x1 - 1, x1 + 1, x1^2 - 2]